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Turbulence without Strange Attractor 
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It is shown that pipe-flow turbulence consists of transients. The "fractar' dimen- 
sions of the dynamical process are thus all zero. Nevertheless, this is compatible 
with Grassberger-Procaccia analyses suggesting the existence of a high-dimen- 
sional strange attractor. The usefulness of the Grassberger-Procaccia method to 
detect the aging of transients is demonstrated. 
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1. I N T R O D U C T I O N  

In a recent paper, Grassberger ~1~ complained about the slow acceptance of 
new notions on dynamical systems by practitioners. The various fractal 
dimensions which can be assigned to dynamical systems having strange 
attractors belong to these notions) 2) Now one semipractical application of 
fractal dimensions is connected with the need for a minimum description of 
a dynamical system: When its fractal dimension v is, for example, 2.05 .... 
then an autonomous system with at least three first-order differential equa- 
tions is necessary to cope with the most important properties of the 
dynamics. To find the Grassberger-Procaccia fractal dimension v requires 
only small effortJ 3~ Furthermore, it can be shown that all the other dimen- 
sions must be of similar size, so that the Grassberger-Procaccia dimension 
is representative and sufficient for the purpose just addressed. I will 
demonstrate here that the Grassberger-Procaccia method rather than the 
number v itself gives useful information on a dynamical system even if it 
has no strange attractor. 

Turbulence is thought to be the best example of a chaotic system. 
Fortunately, both terms, turbulence and chaos, are so elastic that this 
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association cannot be wrong. In turbulence, one has to distinguish at 
least between two different kinds: turbulence with external body forces and 
turbulence dominated by shear flow. Examples for the first kind occur 
in the Raleigh-B6nard and Taylor systems. The body force in the 
Rayleigh-B6nard system is gravitation, which comes into play via thermal 
effects; in the Taylor system, the body force is centrifugal. These forces 
cause various instabilities, keep the fluid always in motion, and are thus 
prerequisites for this kind of turbulence. In shear-flow systems, as, e.g., in 
ordinary pipe flow, external body forces do not exist; turbulence must 
sustain imself merely by the friction between layers with different velocities 
and by inertia. The shear flows constitute thus a second kind of turbulent 
system. 

Common to all them is the assignment of a criticalparameter: For the 
Rayleigh-B6nard system, it is the Rayleigh number; for Taylor's system, it 
is the Taylor number; for the shear-flow systems, the Reynolds number. 
Turbulence arises when the critical parameter transgresses a certain value. 
But a closer inspection reveals important differences. 

First, the onset is different. Turbulence in body-force systems is 
preceded by at least one linear instability. ~4) For example, there is a critical 
Rayleigh number for the first instability Ral and a Rayleigh number 
for turbulence Raturb with Ral < Raturb. In the shear-flow systems we can 
have turbulence for Reynolds numbers which are much too small for 
an instability (channel flow is an example ~s~ with Re1=5772 and 
Returb -~ 1100), or we can have turbulence when there is no linear instability 
at all (as in pipe flow 16~ with Returb ~ 2000). Moreover, in all shear flows 
the critical Reynolds number Returb is not well defined, since it depends on 
the strength of the disturbances. 

Second, the developed turbulence is different. For  turbulence in body- 
force systems, Grassberger-Procaccia analyses indicated low-dimensional 
strange attractors. (3,v lo~ For the shear flows, the same analysis yielded no 
finite dimension, and this holds true for analyses based on experimental 
and on computed data. (11'121 I will show here that the results for shear flow 
are compatible with turbulence which consists just of transients. 

2. N O  L O W - D I M E N S I O N A L  S T R A N G E  A T T R A C T O R  

The foundation of the present work is furnished by data from a 
simulation of pipe flow. These simulations yielded, apparently for the first 
time, turbulence derived directly from the Navie~Stokes equations. The 
precise statement of the boundary-value problem together with its solution 
is given in ref. 6. It is recommended to compare the numerical methods 
applied there with others discussed in ref. 13. I have now a code which is 
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considerably faster than that of ref. 6. It permits the computation of the 
evolution of flow for times as long as t =  10000, whereas formerly t - -500 
could only be surpassed in a few cases. 

In this paper customary dimensionless units will be used throughout. 
These units are based on the centerline velocity of the basic flow, on the 
radius of the pipe, and on the kinematic viscosity of the fluid. 

To ease comparison, the present analysis was made to conform as 
much as possible to the experimental one. (12~ In particular, from the 
computational results the streamwise velocity fluctuation u:(t) was extracted 
as a function of time t. In cylindrical coordinates {p, q),z} it can be 
expressed as the scalar product 

u_~(t):= e : -  u (p  = O, q~, z = O, t) (1) 

of the unit vector e -~ with the disturbance u(p, q), z, t). The disturbance 
again is nothing else than the difference between the total velocity field U 
and the basic Hagen-Poiseuille flow U riP, 

u(p, (p, z, t): = U(p, (p, 2, t) - u n e ( p )  (2) 

From u:(t), single-variable time series were constructed, and 
n~,-dimensional vectors were formed: 

{u.(t), u__(t + z) ..... uAt + ( n e -  1) 3)} (3) 

As in ref. 12, these vectors were multiplied with 1/(n~/2Urrns), Urm s being the 
standard deviation of the data u.. From the vectors (3), the correlation 
integral C(r) was evaluated following precisely Grassberger and Procaceia's 
prescription. (3/This was very easy indeed: The core of the code, available 
from the author upon request, comprises less than 20 statements. 

In order to visualize salient trends, it is convenient to plot the slope 
function 

log C(ri + 1) -- log C(r~_ l) 
S(r,):= (4) 

log ri+~ - l o g  ri_l  

The s e t { r i r i = l , . . . , n  } of radii for which the correlation integral was 
actually computed can be seen in Figs. 1, 3, and 4. 

Figure 1 displays a typical result: With decreasing radius r, the slope 
S approaches the embedding dimension n,.. Thus, there is no strange attrac- 
tor with dimension lower than 20. Similar pictures were made for numerous 
other trajectories, with up to 10,000 vectors. In most cases the approach to 
the asymptotic values came out even better than in Fig. 1. 

Figure 1 is nearly identical with Fig. 3 in ref. 12. This means that 
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Fig. 1. Slope S as a function of the correlation radius r for various embedding dimensions 
n e. The results are based on about 1500 vectors of the type (3) with r=2.  The Reynolds 
number of the source trajectory was Re = 2000. The trajectory was started at initial values as 
defined in ref. 6 by Eq. (36) with ao = 0.2. If there were a strange attractor with fractal dimen- 
sion, say, v = 1.8..., one would expect that the slopes reach E8... for small radii r, but do not 
pass it. And this very behavior should show up in all embedding spaces with n~ > v. Figure 4 
seems to be an example for such a case. 

exper imenta l  and  theore t ica l  results on pipe flow a lmost  coincide. The dif- 
ferences are  the following: In the theoret ica l  analysis  the embedd ing  d imen-  
sion was not  increased beyond  20, as this would  a m o u n t  to overs t ra in ing  
the G r a s s b e r g e r - P r o c a c c i a  method .  Second,  the slopes for n e = 2 0  are 
somewha t  smal ler  in theory  than  in experiment .  This,  however,  does not  
come as a surprise,  because  the exper iment  was done  with a Reynolds  
number  14 t imes as high as in the computa t ion .  

The th i rd  i tem to be r emarked  in Fig. 1 is the excellent convergence with 
respect  to the number  of the vectors. Obv ious ly  it is poss ible  to ob ta in  
valid in format ion  using only 1500 vectors. 

O u r  s imula t ion  (6) has two advan tages  over  recent  exper imenta l  work(12): 
F i rs t  it was done  for compara t ive ly  small  Reynolds  numbers  (Re ~ 3000), 
where there is more  hope  to find a low-dimens iona l  s t range a t t r ac to r  than  
at Re = 28,500. Second,  the level of undefined pe r tu rba t ions  is in a stable 
c o m p u t a t i o n  cer ta inly  several  orders  of magn i tude  lower  than  even in the 
best  exper iment .  This permi ts  a clearer  d is t inc t ion  between r andomness  
which comes from the env i ronment  and r andomness  p r o d u c e d  by the flow 
itself. The  po in t  is i m p o r t a n t  because it is usual ly  c la imed that  a picture 
like Fig. 1 indicates  the p r edominance  of external  noise. (3) This, however,  is 
not  necessari ly so, as we will see in the next section. 
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3. T R A N S I E N T S  

The fun with Fig. 1 is tha t  it is a pretender .  The t ra jec tory  from which 
it is t aken  looks  like turbulence  for t imes t < 3000, but  at  t ~ 3150 it calms 
down (cf. Fig. 2). 

The  average lifetime t-turb of  such a tu rbu len t  t rans ient  depends  drast i -  
cally on the Reynolds  number .  The word  average was emphas ized  since 
sl ightly different init ial  condi t ions  yield very different lifetimes. W h a t  I 
can guess after a few tests for some Reynolds  numbers  are  the fol lowing 

o rde r -o f -magn i tude  est imates:  t-t,rb ~ 500 for Re = 2000, t-turb ~ 3000 for 
Re = 2500, and  /t,rb > 10,000 for Re = 3000. 

This sort  of t rans ient  is comple te ly  compa t ib l e  with experiments .  As it 
tu rns  out  now, the  c o m p a r i s o n  of c o m p u t a t i o n a l  results with exper iments  
as descr ibed in ref. 6 was based on transients .  This,  however,  does not  
d iminish  the reasonable  agreement  reached there for the double threshold, 
for the mean velocity, for the velocity .fluctuations, and for the resistivity. 
Also the g o o d  agreement  of such results as shown in Fig. 1 with Sieber 's  
f indings (12) confirms that  an acceptab le  descr ip t ion  of real i ty  was found. 

Fu r the rmore ,  e igenvalue analysis  of the s imula t ions  (6) a l lowed one 
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Fig. 2. Centerline velocity fluctuation u~ and energy Ed~ s as functions of time. Shown is the 
end of a transient. For times 0 < t < 2800 the curves look as jagged as for 2800 < t < 3000. The 
basis is the same trajectory as used for Fig. 1. 
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to trace the origin of pipe turbulence back to a certain property of 
the linearized problem, namely its deficiency. This deficiency divides all 
possible flow modes in two classes, mothers and daughters. The mothers 
feed the daughters by a linear mechanism, and the daughters make the great 
fuss called turbulence. Nevertheless, if it were only for linear interactions, 
mothers would die, and then also the daughters disappear. The nonlinearity 
reshuffles the modes and thus regenerates mothers. Essential here is the 
randomness of the reshuffle: The nonlinearity does not care whether it 
recreates mothers or daughters. But with increasing Reynolds number the 
mothers outmatch the daughters, so that the probability for the nonlinear 
regeneration of a daughter gets exceedingly small. Yet it may happen that 
the nonlinearity misses the mothers, and this will kill the turbulent motion. 
Hence, mothers and daughters do not guarantee permanence, in marked 
contrast to chaos, which is built on linear instabilities. 

Transients with lifetimes as long a s  t turb = 1 0 , 0 0 0  cannot reveal their 
true identity in an experiment, for t turb = 10,000 means that a turbulent 
burst must migrate through a pipe which has a length of 10,000 radii before 
it is quenched. But for Reynolds numbers below 3000, the transients show 
up. And in fact, intermittency can be related to them. Intermittency in a 
pipe at Re = 2500 includes patches of laminar flow. In these patches, the 
level of turbulence is not only somewhat decreased as in high-Reynolds- 
number intermittency, it is exactly zeroJ 14) The initialization of a new burst 
requires a disturbance from outside, or, in other words, intermittency in 
pipe flow rests on randomness from the environment. This explains the 
variety in the experimental reports when quantitative results are at stake 
(see, for example, the discussion of "puffs" and "slugs" and the comparison 
with Rotta's data by Wygnanski and Champagne'S5)). 

The most interesting features of these transients are their lifetimes as 
compared with the lifetimes obtained from linear analysis. For  example, for 
Re = 2000 the longest lifetime from linear analysis is qin ~ 20 (this is just 
the inverse of - c r  in Fig. 23 of ref. 6. The life of the turbulent transient 
shown in Fig. 2 lasts 150 times longer. 

4. A G I N G  

The phase space accessible to an autonomous dissipative system shrinks 
steadily as time goes on. ~2~ Hence, also the transient trajectories must age 
continuously. But it is difficult to observe this in Fig. 2. In such plots, it 
always looks as if the turbulent transient stays youthful until it suffers a 
sudden death. 

Grassberger-Procaccia analysis, however, determines directly the fill 
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of the phase space. Due to its fast convergence this method should be 
applicable for quite short pieces of a trajectory. 

What is the meaning of such a picture as Fig. l? That all the slopes 
reach, for sufficiently small r, the embedding dimension, signals a pretty 
complete spread in the phase space: The transient romps so wildly around 
that it does not seem to omit any subspace. But it matters also at which 
radius the embedding dimension is reached: When the value of r for which 
this happens is small, we know that there is just a small-scale rampage. But 
when the respective r is large, the conquest of space takes place with large 
random jumps. Hence we expect that the slopes (4) taken from an 
exhausted part of a transient should be lower than the slopes from a fresh 
part. This is in fact true (see Fig. 3). For large values of r, the differences 
cannot show up because all slopes must approach 0 for r-+ c~. For small 
values of r, the embedding dimension is reached. Therefore, again, no 
differences show up. But in the intermediate region one perceives the 
signature of aging. 

An experimental investigation of intermittent pipe flow using this tool 
should be not too difficult. In such a study, it is of utmost importance to 
keep uncontrolled perturbations away from the pipe, and it is probably 
most rewarding to look preferentially for flows at R e ~  2000. (16~ 
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Fig. 3. Similar to Fig. 1. For this picture, the trajectory was split into two parts, as indicated 
in the right upper corner of the figure, and Grassberger-Procaccia analysis was performed for 
each part separately. The stars display the results from the fresh part, whereas crosses come 
from the exhausted piece. Hatching was applied to make the essential difference conspicuous. 
This picture was made for the embedding dimension n e = 5. As with all figures in this paper, 
this is just  one example for many  others where similar trends were observed. 
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5. S U M M A R Y  

The days when the strange attractor was believed to be a generally 
valid model of turbulence (ref. 17; see also ref. 2, Chapter 6, and ref. 18) 
belong to the past. The example just produced refers only to pipe flow close 
to the onset of turbulence. But since all shear flows are similar in their 
basic physics, there is little doubt that the result presented here applies 
to a broad class of fluid motion: Turbulence in shear flows consists of 
transients. 

These turbulent transients are wondrous. They survive for very long 
times, but within rather short times they manage to visit considerable parts 
of the phase space. These peculiarities would not exist without nonlinearity. 

Without perturbations from outside, turbulence in pipe flow can 
neither begin nor persist. But very weak and rare perturbations are 
sufficient. The spread of the turbulent transient in phase space is therefore 
an internal property of the transient. In other words, the external noise is 
just the trigger but not reason for the erratic flow. 

Much of the work done for nonlinear dynamics was concerned with 
the properties of strange attractors. It might seem that all this is without 
meaning for the turbulent transients. Fortunately, prospects are better. The 
techniques developed for strange attractors are mostly methods to charac- 
terize the visits of a trajectory in the various quarters of phase space. They 
deliver information which is as important for transients as for trajectories 
on a strange attractor. In this paper, the Grassberger-Procaccia method 
was slightly modified to monitor the aging of turbulent transients. Aging of 
transients is a question of great practical importance for the controlled 
suppression of turbulence. 

A P P E N D I X :  DO NOT T A K E  AN A R B I T R A R Y  V A R I A B L E  

Sieber ~12) pointed to some misleading effects caused by data taken with 
too small time differences. For  example, if the single-variable time-series 
technique is employed, the vectors {x(t), x(t + ~) ..... x(t  + ( n e -  1)r)} built 
from some variable x(t) are not useful when r is too small. Clearly, for 

~ 0 we rediscover the dimension of the trajectory, viz. 1. I add here a 
warning of another trap. 

The choice of the variable from which the time series and the vectors 
are constructed matters very much. For  Fig. 4 the same analysis was 
performed as for Fig. l, but with x( t )=  Eaidt), where Edis(t ) is the energy 
of the disturbance. The picture seems to indicate the existence of a less than 
two-dimensional strange attractor. 



Turbulence without Strange Attractor 1311 

S 
3 

" ne= 5 
* ne=lO 
e ne=20 

2 ! c o o  ~ 
~ A A * ' . O  

1 [ ' , . , O  " t |  
0 tO 

- 1  0 1 
10  10  10  

Fig. 4. Almost the same as Fig. 1. The only difference is the variable used to set up the time 
series: here it is the energy Ea~s(t ) of the disturbance. Note the smaller scale of S. 

For the disturbance defined by Eq. (2), this energy is 

Edis(t) := �89 [ u(r, t) a dv (At) 
pipe) 

The integration extends over a periodicity volume of the pipe/6) Now it is 
plausible that this variable is an "almost conserved" quantity: At large 
Reynolds numbers the friction is small, and the coupling with the basic 
Hagen-Poiseuille flow occurs on a scale of around 50 time units since this 
is the typical lifetime of a mother-daughter pair (see Fig. 13 in ref. 6). As 
can be seen in Fig. 2, Edis ( t  ) varies in a much slower manner than uz(t), so 
that the r used for the analysis with Edis(t) has to be much larger than that 
with uz( t ). 

We have thus an example that even for a fixed system the check on 
short-time correlations has to be performed for every variable anew. 
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